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EMG Decomposition

Overview
Technical issues
EMGIab: Open-source decomposition program

Strategies for manual decomposition

Working together: EMG decomposition user’s group
Decomposition-based quantitative clinical EMG
Decomposition of high-density surface EMG

How accurate is this decomposition?

The muscle
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Muscle architecture
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Muscle cross section

The motor unit

The motor-unit action potential (MUAP)

The electromyogram (EMG)
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EMG Decomposition

Clinical Physiological
Decomposition
MUAP analysis
i Single-unit
Single-fiber EMG
electrodiagnosis application motoneuron
motor unit
muscle architecture
MUAP waveforms, focus MU firing pattems
single-fiber potentials
speed, automation cnteria completeness
Surface EMG Algorithms

Spike detection (segmentation)
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Clustering (template formation)
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Classification
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Analysis
MUAP waveforms
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Firing behavior

EMGlab
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Motor-unit recruitment
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Common drive
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Motor-unit architecture

Motor-unit firing patterns

Coordination between muscles

Instantaneous firing rates  1ered 0
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Independent components

MUAP components

Newly recruited MUAP with satellite,
howing changing conduction velocity
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http://www.emglab.net

EMGLAB Goals:

« promote decomposition
as a research tool

« exchange EMG data
« attention to accuracy
« algorithm innovation

EMGiIab database

« Sample signals from nine
institutions.

« lilustrate different
—recording techniques
—muscles
—experimental conditions

o « Dataset of clinical signals
S (Nikolic, 2001).

Database of clinical signals

« over 1000 signals
from 30 subjects

EMGiIab software

— myopathy
-ALS
B L o o X — normal controls
Electrodes
Less selective Selective

concentric needle T
quadrifillar needle
monopolar needle quadrfillar wire
—
& e cut-end wire
1mm

Electrodes

Less selective electrode
~ contacts more fibers
- averages potential field over larger extent

Selective electrode A
— contacts fewer fibers 1
- averages potential field over smaller extent




Monopolar / bipolar Filtering
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Bipolar signal can be busier v ' o
if electrodes see different activity. | distont MUAPs
re pair High-pass filtering can be effective f T =3 B T
for removing distant activity. : O Nyoustrste | Sivmoling rade = 2 Ny
Sampling MUAP waveform
MUAP waveform
— monopolar electrode records
distant components best spike
~ averaging req’d for good SNR
- provides information about i | fraction
MU architecture [\ (satellite)
[ ered \ |
b o — A\
\ IR | slow afterwave
Oversampling i/ / Nyquist-rate sampling
— higher bandwidth, storage — lower bandwidth, storage Template 1 kHz | . ‘
- no interpolation - requires interpolation _ Pt [W—
— discrete-time methods — continuous-time methods Wors GalinoNebis I
MUAP variability Big and small MUAPs
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- elactrode movement R l J ) MM'J,*}LML»—M RL*—'—JJ—\LIr
- muscle length change fitterod
- change in firing rate (which gradual change over 20 s 7 T
affects conduction velocity) e 6 108y 0 s
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Discharge-to-discharge T T I '[
jitter in SFAP arrival times ’ '
(jiggle) due to fluctuations in 1 ms Small MUAPSs
conduction velocity. e 3 e « can provide useful information
| « poorer SNR
* how low can you go?




Small MUAPs
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Superpositions
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partial constructive  destructive
« Occur frequently in busy signals.
* Why resolve?
{W n-wbw; - —to get full firing behavior o ‘
Yy s ‘ - unavoidable in busy signals ROl
o SosR EEO: — confirm decomposition accuracy
Sometimes a small MUAP Sometimes you can't be positive * MU identities often revealed by firing-time e
is the missing “piece of where if goes. information. B~
the puzzle." P
Common drive

* Firing variability A A A oA
— intrinsic variability less common d
- modulation




How accurate is this decomposition?
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Why do we care?
* To be scientific.
* To save ourselves from wishful thinking.
* To convince others.

What do we mean?
* Accuacy of the algorithm?
» Accuracy of the signal?
* Accuracy of each MUAP train!

Standards of evidence

Burden of proof
- MUAP validity, firing statistics
~ Firing and recruitment patterns
— MUAP waveforms, precise firing times

Desirable characteristics
- Convincing
— Visual / Quantitative / Statistical
~ Based on reasonable assumptions
— Practical to obtain

Ways of assessing accuracy

« External evidence
- independent signals from same contraction
(“two-source,” "cross-checking")

* Intemal evidence
~ inter-algorithm / inter-operator consistency
- physiological consistency
~ “seeing is believing”
— a-posteriori probability

« Validation study
- simulated data
- real data

Accuracy of a MUAP train
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External evidence: cross-checking
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External evidence: cross-checking
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External evidence: cross-checking

External evidence: cross-checking
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Inter-algorithm comparison

Compared 3 clinical algorithms against manual decomposition

MUAPs detected

o Multi Motor Unit Analysis (Nandedkar) 36/48
DQEMG (Stashuk) 43/48
EMGTools (N&olic) 47/ 48

Duration

Amplitude -

Inter-algorithm comparison

Physiological consistency

consistent
firing behavior
between MUs
from differont
electrodes

“Seeing is believing"




Self evidence

Qualitatively, we can be highly confident in this d position.

Can we guantify this confidence in a convincing way?

A-posteriori: Assumptions

What you see is what there is.
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MUAP templates mean firing rates baseline noise
MUAP variability firing variability variability

A-posteriori probability
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A-posteriori: Examples
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Example 1: Assess MUs 1 and 2, treating 3, 4, 5 as noise,

Example 2: Assess MUs 4 and 5, treating 1, 2, 3 as known.

A-posteriori example 1: Large MUAPs

A-priori probability (based on shape alone)
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MUs 3-5 treated as noise.




A-posteriori example 1: Large MUAPs

A-posteriori probability Decomposition accuracy
>
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MUs 3-5 treated as noise.

A-posteriori example 2: Small MUAPs

A-priori probability (based on shape alone)
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MUs 1-3 treated as known.

A-posteriori example 2: Small MUAPs

A-posteriori probability Decomposition accuracy
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MUs 1-3 treated as known.

Validation

Test a representative set of signals.
* simulations

* cross-checking

Concems: S e

+ Do the test signals adequately represent the
experimental signals?

* Model dependency on MUAP size and signal
complexity.

Validation: dependence on MUAP and signal

Agreement
Rate (%)

|MUAP — MUAP* |
| Signal |

MUAP SNR =
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